[English] 日本語
Yorodumi
- PDB-6x29: SARS-CoV-2 rS2d Down State Spike Protein Trimer -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6x29
TitleSARS-CoV-2 rS2d Down State Spike Protein Trimer
ComponentsSpike glycoproteinPeplomer
KeywordsVIRAL PROTEIN / Trimer
Function / homology
Function and homology information


suppression by virus of host tetherin activity / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated virion attachment to host cell / endoplasmic reticulum-Golgi intermediate compartment / viral translation / host cell surface receptor binding / endocytosis involved in viral entry into host cell / endocytic vesicle membrane / viral protein processing / fusion of virus membrane with host plasma membrane ...suppression by virus of host tetherin activity / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated virion attachment to host cell / endoplasmic reticulum-Golgi intermediate compartment / viral translation / host cell surface receptor binding / endocytosis involved in viral entry into host cell / endocytic vesicle membrane / viral protein processing / fusion of virus membrane with host plasma membrane / suppression by virus of host type I interferon-mediated signaling pathway / fusion of virus membrane with host endosome membrane / viral envelope / viral entry into host cell / go:0009405: / endoplasmic reticulum lumen / host cell plasma membrane / virion membrane / integral component of membrane / identical protein binding
Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein S2, coronavirus / Betacoronavirus-like spike glycoprotein S1, N-terminal / Betacoronavirus spike glycoprotein S1, receptor binding / Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein, betacoronavirus / Spike receptor binding domain superfamily, coronavirus ...Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein S2, coronavirus / Betacoronavirus-like spike glycoprotein S1, N-terminal / Betacoronavirus spike glycoprotein S1, receptor binding / Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein, betacoronavirus / Spike receptor binding domain superfamily, coronavirus / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / in:ipr027400: / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus
Spike glycoprotein
Biological speciesSevere acute respiratory syndrome coronavirus 2
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.7 Å
AuthorsHenderson, R. / Acharya, P.
Funding support United States, 5items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)U24 GM129539 United States
Other privateSF349247 United States
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)UM1 AI100645 United States
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)UM1 AI44371 United States
National Institutes of Health/National Institute of Environmental Health Sciences (NIH/NIEHS) United States
Citation
Journal: Nat Struct Mol Biol / Year: 2020
Title: Controlling the SARS-CoV-2 spike glycoprotein conformation.
Authors: Rory Henderson / Robert J Edwards / Katayoun Mansouri / Katarzyna Janowska / Victoria Stalls / Sophie M C Gobeil / Megan Kopp / Dapeng Li / Rob Parks / Allen L Hsu / Mario J Borgnia / Barton ...Authors: Rory Henderson / Robert J Edwards / Katayoun Mansouri / Katarzyna Janowska / Victoria Stalls / Sophie M C Gobeil / Megan Kopp / Dapeng Li / Rob Parks / Allen L Hsu / Mario J Borgnia / Barton F Haynes / Priyamvada Acharya /
Abstract: The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The ...The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different β-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications.
#1: Journal: bioRxiv / Year: 2020
Title: Controlling the SARS-CoV-2 Spike Glycoprotein Conformation.
Authors: Rory Henderson / Robert J Edwards / Katayoun Mansouri / Katarzyna Janowska / Victoria Stalls / Sophie Gobeil / Megan Kopp / Allen Hsu / Mario Borgnia / Rob Parks / Barton F Haynes / Priyamvada Acharya /
Abstract: The coronavirus (CoV) viral host cell fusion spike (S) protein is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S- ...The coronavirus (CoV) viral host cell fusion spike (S) protein is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available β-CoV S-protein structures. We found that despite overall similarity in domain organization, different β-CoV strains display distinct S-protein configurations. Based on this analysis, we developed two soluble ectodomain constructs in which the highly immunogenic and mobile receptor binding domain (RBD) is locked in either the all-RBDs 'down' position or is induced to display a previously unobserved in SARS-CoV-2 2-RBDs 'up' configuration. These results demonstrate that the conformation of the S-protein can be controlled via rational design and provide a framework for the development of engineered coronavirus spike proteins for vaccine applications.
Validation Report
SummaryFull reportAbout validation report
History
DepositionMay 20, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0May 27, 2020Provider: repository / Type: Initial release
Revision 1.1Jun 24, 2020Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _citation_author.identifier_ORCID
Revision 2.0Jul 29, 2020Group: Advisory / Atomic model ...Advisory / Atomic model / Data collection / Derived calculations / Structure summary
Category: atom_site / em_entity_assembly ...atom_site / em_entity_assembly / em_software / emd_angle_assignment / emd_author_list / emd_buffer / emd_ctf_correction / emd_final_reconstruction / emd_grid / emd_image_processing / emd_image_recording / emd_microscopy / emd_natural_source / emd_recombinant_expression / emd_software / emd_specimen / emd_startup_model / emd_structure_determination / emd_supramolecule / emd_virus / emd_vitrification / pdbx_struct_assembly_prop / pdbx_validate_close_contact / pdbx_validate_peptide_omega / pdbx_validate_rmsd_angle / pdbx_validate_torsion / struct_conn
Item: _atom_site.Cartn_x / _atom_site.Cartn_y ..._atom_site.Cartn_x / _atom_site.Cartn_y / _atom_site.Cartn_z / _atom_site.pdbx_formal_charge / _em_entity_assembly.name / _em_software.category / _em_software.fitting_id / _em_software.imaging_id / _pdbx_struct_assembly_prop.value / _pdbx_validate_close_contact.auth_asym_id_1 / _pdbx_validate_close_contact.auth_asym_id_2 / _pdbx_validate_peptide_omega.omega / _pdbx_validate_rmsd_angle.angle_deviation / _pdbx_validate_rmsd_angle.angle_value / _struct_conn.pdbx_dist_value
Description: Model orientation/position / Provider: author / Type: Coordinate replacement
Revision 2.1Sep 30, 2020Group: Database references / Category: citation / citation_author
Revision 2.2Oct 21, 2020Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation_author.identifier_ORCID

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-21997
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Spike glycoprotein
B: Spike glycoprotein
C: Spike glycoprotein


Theoretical massNumber of molelcules
Total (without water)422,1763
Polymers422,1763
Non-polymers00
Water0
1


TypeNameSymmetry operationNumber
identity operation1_5551
Buried area29290 Å2
ΔGint-165 kcal/mol
Surface area122340 Å2

-
Components

#1: Protein Spike glycoprotein / Peplomer / S glycoprotein / E2 / Peplomer protein


Mass: 140725.375 Da / Num. of mol.: 3 / Fragment: ectodomain (UNP residues 16-1208) / Mutation: D985C+S383C
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Severe acute respiratory syndrome coronavirus 2
Gene: S, 2 / Production host: Homo sapiens (human) / References: UniProt: P0DTC2

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Spike glycoprotein ectodomain / Type: VIRUS / Entity ID: #1 / Source: RECOMBINANT
Source (natural)Organism: Severe acute respiratory syndrome coronavirus 2
Source (recombinant)Organism: Homo sapiens (human)
Details of virusEmpty: NO / Enveloped: YES / Isolate: OTHER / Type: VIRION
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportDetails: unspecified
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 65.18 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C3 (3 fold cyclic)
3D reconstructionResolution: 2.7 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 367259 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Aug 12, 2020. New: Covid-19 info

New: Covid-19 info

  • New page: Covid-19 featured information page in EM Navigator

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

-
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. New: Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force. (see PDBe EMDB page)
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is "EMD"? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB at PDBe / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary. This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated. See below links for details.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software). Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

+
Jun 16, 2017. Omokage search with filter

Omokage search with filter

  • Result of Omokage search can be filtered by keywords and the database types

Related info.:Omokage search

Read more

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more